453. The Electrolytic Reduction of Unsaturated Steroid Ketones. Part II.¹ The Structures of Some Steroid Polyenes.

By PETER BLADON and JAMES REDPATH.

Electrolytic reduction of unsaturated 3-oxo-steroids leads to the formation of pinacols. The structures of the polyolefins formed by dehydration of the pinacols are discussed.

IN Part I of this series 1 was described the electrolytic reduction of cholest-4-en-3-one to yield the pinacol (I; $R = 17\beta - C_8 H_7$). In order to rest the general applicability of this reaction, a number of steroid ketones, including examples of Δ^{4} -, $\Delta^{4,6}$ -, $\Delta^{4,7}$ -, and $\Delta^{1,4}$ unsaturated 3-ketones, were reduced electrolytically by essentially the same method. Each gave a pinacol, which, by analogy with that formed from cholest-4-en-3-one, is assumed to have the 3β -hydroxyl configuration. The full range of compounds tested is listed in Table 1.

Cholestenone pinacol (I; $R = 17\beta - C_8H_{17}$) is known² to be readily dehydrated to bicholesta-3,5-dienyl (II; $R = 17\beta - C_8H_{17}$), and the pinacol (I; $R = 16\beta , 17\beta - C_8H_{14}O_2$)

- Part I, Bladon, Cornforth, and Jaeger, J., 1958, 863.
 Squire, J. Amer. Chem. Soc., 1951, 78, 2587.

formed from Δ^4 -tigogenone behaved similarly on treatment with mineral acid, yielding the tetraene (II; $R = 16\beta, 17\beta-C_8H_{14}O_2$).

On treatment with mineral acid, the pinacol (III; $R = 17\beta - C_8H_{17}$) derived from cholesta-1,4-dien-3-one yielded a hydrocarbon, m. p. 196°, λ_{max} 242, 360, 378 mµ (ε 9000, 12,700, 12,500), presumably identical with the hydrocarbon isolated by Kirk, Patel, and Petrow³ on reduction of cholesta-1,4-dien-3-one with zinc and acetic acid. This is assigned structure (IV; $R = 17\beta - C_8 H_{17}$) for the following reasons. The wavelength of maximum ultraviolet absorption is considerably higher than that of bicholesta-3,5-dien-3-yl (see Fig. 1), and the most obvious structure (V), having four linear conjugated double bonds and two cross-conjugated components, would be expected to have light absorption roughly comparable to that of this simple analogue. The bathochromic shift (48 m μ) can be accounted for by the presence of an additional double bond in linear conjugation,

FIG. 1. Light absorption in chloroform of: (A) 3,3'-Bicholesta-3,5-dienyl; ¹ (B) 3-(3-cholesta-4,6-dienylidene)cholesta-1,4,6-triene.

FIG. 2. Light absorption in chloroform of: (C) 3,3'-biergosta-3,5,7,22-tetraen-3-yl; (D) 3-(3'-cholesta-4',6'-dienylidene)cholesta-4,6,8(14)-triene.

as in (IV), for which, according to the Woodward–Fieser rules,⁴ the calculated wavelength of maximum light-absorption is 355 m μ (when the effect of the cross-conjugated double bond is neglected). A similar dehydration product (IV; $R = 16\beta_1 7\beta_2 - C_8 H_{14} O_2$) was formed from the pinacol derived from the sapogenin ketone (III; $R = 16\beta_{17}\beta_{-}C_{8}H_{14}O_{2}$).

Reduction of santonin (VI), which has the similar cross-conjugated dienone system, with zinc and acetic acid is reported to give the bimolecular santonone (VII).⁵ The light absorption [λ_{max} (in chloroform) 246, 274 m μ (ϵ 7624, 3015) (hitherto unreported)] is consistent with an aromatized structure but is different from that of 2,2'-dimethylbiphenyl⁶

³ Kirk, Patel, and Petrow, J., 1957, 1046.

 ⁴ Fieser and Fieser, "Steroids," Reinhold Publ. Inc., New York, 1959, p. 17.
 ⁵ Simonsen, "The Terpenes," Cambridge Univ. Press, Cambridge, 1952, Vol. III, p. 274; Pannain,

Atti Accad. naz. Lincei, Rend. Classe Sci. Fis. mat. nat., 1908, 17, 499; Gazzetta, 1909, 39, 515.
 ⁶ O'Shaughnessy and Rodebush, J. Amer. Chem. Soc., 1940, 62, 2906; Braude and Waight in
 " Progress in Stereochemistry," ed. Klyne, Butterworths Scientific Publns., London, Vol. I, 1954, p. 441.

TABLE 1.	(%)	H)-95 [1-2	1.2	0.1	9-8	Paland, <i>Ber.</i> , 421; Burn, 1pbell, John- 1er, J. Amer.			(%)	H	0	1.3	9-4	10-8	11-3	10-8	9-4	÷
	quired		ся ко С 4 со 4	0 -44 000	8	7				uired (_	7 1		1	1 1	1		09-00
	Re	ပ	48 8 8 9 8	81.08	85.	-81	and I 956, 4 , a, Can l Turn			Reg	O e	0	30 30	82-	89.5	30 30	89-58	82.4	o. p. 4
		Formula	H ^a o 100 100	H ¹				Formula	064117804	C 54 H 82	C ₅₄ H ₇₄ O ₄	C ₅₆ H ₈₂	C ₅₄ H ₈₂	C ₅₆ H ₈₃	C ₅₄ H ₇₄ O ₄	petroleum (1			
			ີ່ບໍ່ບໍ່ເ		C se]	C, 1	Jannent <i>n. Bull.</i> 18 She 388. 17	Muru, Kirk, and Petrow, Proc. Chem. Soc., 1960, 14). ¹⁸ She i5, 77, 1212. ¹⁴ Wettstein, Helv. Chim. Acta, 1940, 23, 388. ¹¹ TABLE 2.		(%	H	0	11-4	9.4	10-9	11-4	0-11	9.4	= light
	(%) p	H	10-0	10-7 10-8	11-3	9-5	moli, I <i>Phari</i> 0, 14). 0, 23 , 3) puno	~ <	2	4	ŀ	ç	10	ņ	67	† Pet -
	Foun	ပ	78-1 84-2	81-9 81-9 80-8	85-3	78-8	idt, Ma 1 Hara, 196(194 194			μų '		0	àc àc	85	Ġ.	ġ œ	-68 -	82.	265).
		ω	10,400 17,400	15,700 14,400 8600	10,000	9000 10,000	EtOH. ¹³ Butenan ¹⁴ Miki and <i>26. Chem. So</i> <i>10. Chim. Ac</i>			Crystn.	solvent †		et	HCl ₃ –MeOH	et (chrom)	et (chrom)	et	et	116, 264,
	•	μu)	206 206 206	209 209 208	206	208 235 235	• From aq. COMe ₂ . ^d In CHCl ₃ . ^e In ter, J. Amer. Chem. Soc., 1940, 62 , 2525. for a sample oi cholesta-1,4-dien-3-one). thethod of Burn, Kirk, and Petrow, P_N . Soc., 1955, 77 , 1212. ¹⁶ Wettstein, He		ols.		ç	288	ч 82888	ు 8888	ч 22222	а 2009	а 2009		r (E1%
		A	°	9.5	1.	300 a -215			pinac		ພ ດີ ເ	45,74	22,50 22,90 22,90 22,90 22,90 20,90	21.55 21.66 21.66	10289411 9698 411 9698 811	30,05 20,050	412 22,40 94,50 94,50	60,90,90,90,90,90,90,90,90,90,90,90,90,90	352 m
	Pinacols.	8		#=» + +	-12				icts of	λmar.	‡ (n/m)	310	328i 342i 358	340i 360	351i 366 386 422	360i 374	360i 374 324	360i 374 392	16, and
		M. p.	280°a 130 a, b	152 °	180 a				on produ		[α]D‡	0.17-	+14.5	-47·2	+ 449	+1	+3	-40.5	ne) 250, 33
			H ₁₄ O ₂)	יטאוחאט-ק <i>ו</i>	•	-C ₈ H ₁₄ O ₂)			behydrati		M. p.	0000	196	>360	234	214	245	276	r. (in hexa
		Ref.* Pinacol	12 3,3'-Bi-(25D, 3 β -hydroxyspirost-4-enyl) (1; R = 16 β ,17 β -C ₆ H 13 3,3'-Bi-(3 β -hydroxycholesta-1,4-dienyl) (III, <u>R</u> = 17 β -C ₆ H ₁ ,	14 3.3 \cdot Bi-(250) 38 \cdot hydroxyspuosia -1, 4 \cdot dienyl) (111; K = 109, 10 1 3.3 \cdot Bi-(38 \cdot hydroxyergosta -4,7,22 \cdot trienyl) (VIII) 16 3,3 \cdot Bi-(38 \cdot hydroxycholesta -4,6 \cdot dienyl) (X; R = 178 \cdot C ₈ H ₁ ,0)	15 3,3'-Bi-(3 β -hydroxyergost-4,6,22-trienyl) (X; R = 17 β -C ₆ H ₁	17 3,3'-Bi-(25D,3 β -hydroxyspirosta-4,6-dienyl) (X; R = 16 β ,17 β	Footnotes to Table 1: a From C ₆ H _a -COMe ₃ . ^b With decomp. * Ref. for starting material: ¹⁴ Marker, Tsukamoto, and Turn 1939, 72 , 1617 (we thank Dr. A. C. LOng, of Glaxo Laboratories, Ellis, and Petrow, J., 1958, 795 (our sample was prepared by the son, Holyez, Slomp, Stafford, Pederson, and Ott, J. Amer. Chem. <i>Chem. Soc.</i> , 1941, 63 , 767.		D			وكيارية - 10p,1/p-C هداره المراجع المراجع المراجع المراجع المراجع الم-C هداري المراجع المراجع المراجع المراجع ا	3.(3-Cholesta-4,6-dienylidene)cholesta-1,4,6-triene (IV; $R=17\beta$ - $C_8H_{17})^{*}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3,3'-Bi(ergosta-3,5,7,22-tetraenyl) (IX; $R = C_{\theta}H_{11}$)	3.(3-Cholesta-4,6-dienylidene)cholesta-4,6,8-triene (XI; R = 17- $C_{6}H_{11}$	3-(3-Ergosta-4,6,22-trienylidene) ergosta-4,6,8,22-tetraene (XI; R $=C_9H_{11}$	3.(3,25D-Spirosta-4,6'-dienylidene-25D-spirosta-4,6,8-triene (XI; R = 16 β ,17 β -C ₈ H ₁₄ O ₈)	Footnotes to Table 2: * Kirk et al. ³ record m. p. 190-196°, λ_{max}

Bladon and Redpath: The Electrolytic

which has no maximum above 220 m μ . The behaviour of santonin and the steroid 1.4dien-3-ones on bimolecular reduction is clearly different, and the structure of santonone is worthy of reinvestigation.

The pinacol (VIII) derived from ergosta-4,7,22-trien-3-one gave, on treatment with mineral acid, the hydrocarbon (IX; $R = C_9 H_{17}$) characterised by its high positive optical rotation. The absorption spectrum (see Fig. 2) showed two long-wavelength bands, consistent with the structure's having six linear conjugated double bonds and two homoannular diene moeities; the most intense peak is of lower-wavelength (366 m μ), presumably owing to incomplete conjugation in the chromophore resulting from slight non-coplanarity of the two steroid nuclei.

Surprisingly the pinacol (X; $R = 17\beta - C_9H_{17}$) from ergosta-4,6,22-trien-3-one did not yield the same hydrocarbon on dehydration but an isomer, formulated as the conjugated hexaene (XI; $R = 17\beta$ -C₉H₁₇) on account of its absorption spectrum (see Fig. 2 for the spectrum of the analogous cholestane derivative). The long-wavelength peak occurs at 392 m μ , the calculated ⁴ value being 405 m μ . In this case the dehydration must proceed in the manner indicated (XII \longrightarrow XIII \longrightarrow XIV).

Bergmann and Ottke,⁷ and Arima and Hayatsu⁸ have reported the formation of a bicholestatrienyl as a by-product in application of the bromination-dehydrobromination⁹

reaction to cholesteryl esters and this was assigned ¹⁰ the structure (IX; $R = C_8 H_{17}$). The high negative rotation ($[\alpha]_p - 200^\circ$) and absorption spectrum (λ_{max} 352, 369.5 m μ ; ε 33,500, 36,500) are in contrast to the properties of the biergosta-3,5,7,22-tetraen-3-yl (IX; $R = C_9 H_{17}$) described above. In fact, the light absorption, being very similar to that of the compound (IV) described above, is more in line with the structure (XV).

- ⁷ Ottke and Bergmann, Nature, 1950, 166, 997; cf. Hafez, Nature, 1950, 165, 401.
- ⁸ Arima and Hayatsu, Pharm. Bull. (Japan), 1953, 1, 212.
- ⁹ Bernstein, Binovi, Dorfman, Sax, and Subbarow, *J. Org. Chem.*, 1949, 14, 433.
 ¹⁰ Arima and Hayatsu, *Pharm. Bull. (Japan)*, 1953, 1, 216; Arima, *ibid.*, p. 220.

Structure (XV) has one less double bond than (IX) and requires a molecular formula $C_{54}H_{84}$; the analyses are insensitive to the two hydrogen atoms.

A second bicholestatrieneyl (" bicholestatriene C ") described by Arima,¹¹ [m. p. 240— 245° (decomp.); λ_{max} (in cyclohexane) 307, 320, 379, 394 mµ (ε 9900, 13,800, 25,100, 27,500)] and assigned the $\Delta^{2,4,6}$ -structure (XVI) by him, is possibly the *cis*-isomer of the hydrocarbon (XI; R = C₈H₁₇).

EXPERIMENTAL

Electrolytic Reduction of the Ketones.—The ketone (1-6 g.) in ethanol (750 ml.) containing hydrated sodium acetate (12 g.) was electrolysed as described ¹ for cholest-4-en-3-one. The solution was poured into water (3 l.) and extracted with benzene. Drying (Na_2SO_4) of the extract and evaporation afforded the crude pinacol which was recrystallised or in some cases chromatographed on alumina. In the latter cases the pinacols were usually eluted with ether or ether-methanol. The *products* are reported in Table 1.

Dehydration of Pinacols by Acid.—The pinacol (0.5_1 g.) in chloroform (10_50 ml.) and methanol (5 ml.) was treated with concentrated hydrochloric acid (several drops to 1 ml.). The mixture was left with occasional shaking for 24 hr. or refluxed for 1 hr. The solution was washed with aqueous sodium hydrogen carbonate, dried (Na_2SO_4) , and evaporated. In all cases, save two, the dehydration product was purified by direct crystallisation. Details of the *products* are given in Table 2.

The authors are indebted to Mr. Wm. McCorkindale for microanalyses.

THE ROYAL COLLEGE OF SCIENCE AND TECHNOLOGY, GLASGOW, C.1.

[Received, October 11th, 1961.]

¹¹ Arima, Pharm. Bull. (Japan), 1953, 1, 224.